OR-Notes är en serie inledande anteckningar om ämnen som faller under den breda rubriken inom forskningsverksamhetsområdet (OR). De användes ursprungligen av mig i en introduktionskurs eller kurs jag ger vid Imperial College. De är nu tillgängliga för användning av studenter och lärare som är intresserade av ELLER underkastade följande villkor. En fullständig lista över ämnena som finns i OR-Notes finns här. Prognosprognoser Prognosexempel 1996 UG-examen Efterfrågan på en produkt i vart och ett av de senaste fem månaderna visas nedan. Använd ett två månaders glidande medelvärde för att generera en prognos för efterfrågan i månad 6. Applicera exponentiell utjämning med en utjämningskonstant på 0,9 för att generera en prognos för efterfrågan på efterfrågan i månad 6. Vilken av dessa två prognoser föredrar du och varför De två månaderna rör sig genomsnittet för månader två till fem ges av: Prognosen för månad sex är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månad 5 m 5 2350. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,9 får vi: Som tidigare prognosen för månad sex är bara genomsnittet för månad 5 M 5 2386 För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi gör det här finner vi att för det glidande medelvärdet MSD (15-19) sup2 (18-23) sup2 (21-24) sup23 16,67 och för det exponentiellt jämnade medlet med en utjämningskonstant på 0,9 MSD (13-17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Totalt sett ser vi att exponentiell utjämning tycks ge de bästa månadens framåtprognoser eftersom den har en lägre MSD. Därför föredrar vi prognosen för 2386 som har producerats genom exponentiell utjämning. Prognosexempel 1994 UG-examen Tabellen nedan visar efterfrågan på en ny aftershave i en butik för var och en av de senaste 7 månaderna. Beräkna ett två månaders glidande medelvärde för månader två till sju. Vad är din prognos för efterfrågan i månad åtta. Applicera exponentiell utjämning med en utjämningskonstant på 0,1 för att få en prognos för efterfrågan i månad åtta. Vilket av de två prognoserna för åtta åtta föredrar du och varför Butiksinnehavaren tror att kunderna byter till den nya efterhäftningen från andra märken. Diskutera hur du kan modellera detta kopplingsbeteende och ange vilka data du behöver för att bekräfta om den här växlingen sker eller inte. Det tvåmånadersrörande genomsnittet för månaderna två till sju är givet av: Prognosen för månad åtta är bara det rörliga genomsnittet för månaden före det vill säga det rörliga genomsnittet för månad 7 m 7 46. Tillämpning av exponentiell utjämning med en utjämningskonstant av 0,1 vi få: Som före prognosen för månad åtta är bara genomsnittet för månaden 7 M 7 31,11 31 (eftersom vi inte kan ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant av 0,1 Övergripande då ser vi att det tvåmånaders glidande medlet verkar ge de bästa månadens framåtprognoser eftersom den har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av två månaders glidande medelvärde. För att undersöka omkoppling skulle vi behöva använda en Markov-processmodell, där staternas varumärken och vi skulle behöva initiala statsinformation och kundbyte sannolikheter (från undersökningar). Vi skulle behöva springa modellen på historiska data för att se om vi har en passform mellan modellen och det historiska beteendet. Prognosexempel 1992 UG-examen Tabellen nedan visar efterfrågan på ett visst märke rakhyvel i en butik för var och en av de senaste nio månaderna. Beräkna ett tre månaders glidande medelvärde i månader tre till nio. Vad skulle vara din prognos för efterfrågan i månad tio Applicera exponentiell utjämning med en utjämningskonstant på 0,3 för att få en prognos för efterfrågan i månad tio. Vilken av de två prognoserna för tio månad föredrar du och varför Det tre månaders glidande genomsnittet för månaderna 3 till 9 ges av: Prognosen för månad 10 är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månaden 9 m 9 20,33. Följaktligen (eftersom vi inte kan ha fraktionerad efterfrågan) är prognosen för månad 10 20. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,3 får vi: Som tidigare är prognosen för månad 10 bara genomsnittet för månaden 9 M 9 18,57 19 (som vi kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi gör det här finner vi det för glidande medelvärdet och för det exponentiellt jämnda medlet med en utjämningskonstant på 0,3 Totalt sett ser vi att tre månaders glidande medelvärde tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 20 som har producerats av tre månaders glidande medelvärde. Prognos exempel 1991 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av faxapparat i ett varuhus i vart och ett av de senaste tolv månaderna. Beräkna fyra månaders glidande medelvärde för månaderna 4 till 12. Vad skulle vara din prognos för efterfrågan i månad 13 Applicera exponentiell utjämning med en utjämningskonstant på 0,2 för att få en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månaden 13 föredrar du och varför Vilka andra faktorer som inte beaktas i ovanstående beräkningar kan påverka efterfrågan på faxen i månad 13 Det fyra månaders glidande genomsnittet för månaderna 4 till 12 ges av: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Prognosen för månad 13 är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månad 12 m 12 46.25. Därför (eftersom vi inte kan ha fraktsubjekt) är prognosen för månad 13 46. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,2 får vi: Som tidigare är prognosen för månad 13 bara genomsnittet för månaden 12 M 12 38.618 39 (som vi kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant på 0,2 Totalt sett ser vi att det fyra månaders glidande medelvärdet tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av fyra månaders glidande medelvärde. säsongsbetonad efterfrågan reklam prisförändringar, både detta märke och andra märken Allmän ekonomisk situation Ny teknik Prognos exempel 1989 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av mikrovågsugn i ett varuhus i vart och ett av de senaste tolv månaderna. Beräkna ett sex månaders glidande medelvärde för varje månad. Vad är din prognos för efterfrågan i månad 13. Applicera exponentiell utjämning med en utjämningskonstant på 0,7 för att få en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månad 13 föredrar du och varför Nu kan vi inte beräkna en sex månad flyttar genomsnittet tills vi har minst 6 observationer - det kan vi bara beräkna ett så genomsnittligt från månad 6 framåt. Därför har vi: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Prognosen för månad 13 är bara det rörliga genomsnittet för månad före det vill säga det glidande medeltalet för månaden 12 m 12 38,17. Följaktligen (eftersom vi inte kan ha fraktsubjekt) är prognosen för månad 13 38. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,7 får vi: Flytta genomsnittliga och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller, slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender kan extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde medför att utjämning av stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel - och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet av Y vid tiden t1 som är gjord vid tiden t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserien Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2 vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom det sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är väldigt stor (jämförbar med längden på uppskattningsperioden) motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotfoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa på den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer man mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (den lokala medelvärdet). Om vi istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är dock inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel konfigurera ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktigt genomsnitt: Modell C, det 5-åriga glidande medlet, ger det lägsta värdet av RMSE med en liten marginal över 3 - term och 9-medeltal, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer respons eller lite mer jämnhet i prognoserna. (Tillbaka till början av sidan.) Browns Simple Exponential Smoothing (exponentiellt vägd glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tiden t beräknas rekursivt från sitt eget tidigare värde som detta: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till den senaste observation. Prognosen för nästa period är helt enkelt det nuvarande släta värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformuläret är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given medelålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid samtidigt som det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera det genomsnittliga kvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallet för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervaller för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA-modell (0,1,1) utan konstant till serien som analyseras här, uppskattas den uppskattade MA (1) - koefficienten vara 0,7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend till en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan uppskattas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Return to top of page.) Browns Linjär (dvs dubbel) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande växthastighet eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiella utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att använda enkel exponentiell utjämning till serie Y. Dvs, värdet av S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att använda enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst, t som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tiden t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan uppskattas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet på 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I det här fallet visar sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att uppskatta trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du 8220eyeball8221 ser den här tomten ser den ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör inte en stor skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär. Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortsiktiga linjära trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörning, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre ur prov än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte all mjukvara beräknar konfidensintervaller för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) I praktiken ger det glidande medelvärdet en bra uppskattning av medelvärdet av tidsserierna om medelvärdet är konstant eller långsamt förändrat. Vid konstant medelvärde kommer det största värdet av m att ge de bästa uppskattningarna av det underliggande genomsnittet. En längre observationsperiod kommer att medeltala effekterna av variationen. Syftet med att tillhandahålla en mindre m är att tillåta prognosen att svara på en förändring av den underliggande processen. För att illustrera föreslår vi en dataset som innehåller förändringar i underliggande medelvärden av tidsserierna. Figuren visar tidsserierna som används för illustration tillsammans med den genomsnittliga efterfrågan från vilken serien genererades. Medelvärdet börjar som en konstant vid 10. Börjar vid tidpunkten 21, ökar den med en enhet i varje period tills den når värdet 20 vid tiden 30. Sedan blir det konstant igen. Uppgifterna simuleras genom att lägga till i genomsnitt ett slumpmässigt brus från en normalfördelning med nollvärde och standardavvikelse 3. Resultaten av simuleringen avrundas till närmaste heltal. Tabellen visar de simulerade observationer som används för exemplet. När vi använder bordet måste vi komma ihåg att vid varje given tidpunkt endast endast tidigare data är kända. Uppskattningarna av modellparametern, för tre olika värden på m visas tillsammans med medelvärdet av tidsserierna i figuren nedan. Figuren visar den genomsnittliga rörliga genomsnittliga beräkningen av medelvärdet vid varje tidpunkt och inte prognosen. Prognoserna skulle flytta de glidande medelkurvorna till höger av perioder. En slutsats framgår omedelbart av figuren. För alla tre uppskattningar ligger det rörliga genomsnittet bakom den linjära trenden, där fördröjningen ökar med m. Lagen är avståndet mellan modellen och uppskattningen i tidsdimensionen. På grund av fördröjningen underskattar det rörliga genomsnittet observationerna som medelvärdet ökar. Estimatorns förspänning är skillnaden vid en viss tidpunkt i modellens medelvärde och medelvärdet förutspått av det rörliga genomsnittet. Förspänningen när medelvärdet ökar är negativt. För ett minskande medelvärde är förspänningen positiv. Fördröjningen i tid och den bias som införs i uppskattningen är funktionerna i m. Ju större värdet av m. desto större är storleken på fördröjning och förspänning. För en kontinuerligt ökande serie med trend a. värdena för fördröjning och förspänning av estimatorn för medelvärdet ges i ekvationerna nedan. Exemplet kurvorna stämmer inte överens med dessa ekvationer eftersom exemplet modellen inte ständigt ökar, utan det börjar som en konstant, ändras till en trend och blir sedan konstant igen. Även kurvorna påverkas av bruset. Den glidande genomsnittliga prognosen för perioder i framtiden representeras genom att man ändrar kurvorna till höger. Fördröjningen och förskjutningen ökar proportionellt. Ekvationerna nedan anger fördröjningen och förspänningen av prognosperioder i framtiden jämfört med modellparametrarna. Återigen är dessa formler för en tidsserie med en konstant linjär trend. Vi borde inte bli förvånad över resultatet. Den glidande medelvärdesberäkaren baseras på antagandet om ett konstant medelvärde och exemplet har en linjär trend i medelvärdet under en del av studieperioden. Eftersom realtidsserier sällan exakt kommer att följa antagandena till en modell, bör vi vara beredda på sådana resultat. Vi kan också dra slutsatsen av att variationen i bruset har störst effekt för mindre m. Uppskattningen är mycket mer flyktig för det rörliga genomsnittet av 5 än det glidande medlet på 20. Vi har de motstridiga önskningarna att öka m för att minska effekten av variationer på grund av bullret och att minska m för att göra prognosen mer responsabel mot förändringar i medelvärdet. Felet är skillnaden mellan den faktiska data och det prognostiserade värdet. Om tidsserierna verkligen är ett konstant värde är det förväntade värdet av felet noll och variansen av felet består av en term som är en funktion av och en andra term som är brusets varians. Den första termen är medelvärdet av det medelvärde som uppskattas med ett urval av m-observationer, förutsatt att data kommer från en population med konstant medelvärde. Denna term minimeras genom att göra m så stor som möjligt. En stor m gör prognosen inte svarande mot en förändring i underliggande tidsserier. För att prognosen ska kunna reagera på förändringar, vill vi ha m så liten som möjligt (1), men detta ökar felvariationen. Praktisk prognos kräver ett mellanvärde. Prognoser med Excel Prognosen för prognoser implementerar de glidande medelformlerna. Exemplet nedan visar analysen som tillhandahålls av tillägget för provdata i kolumn B. De första 10 observationerna indexeras -9 till 0. Jämfört med tabellen ovan förskjuts periodindex med -10. De första tio observationerna ger startvärdena för uppskattningen och används för att beräkna det glidande medlet för period 0. MA (10) kolumnen (C) visar de beräknade glidande medelvärdena. Den rörliga genomsnittsparametern m är i cell C3. Fore (1) kolumnen (D) visar en prognos för en period framåt. Prognosintervallet ligger i cell D3. När prognosintervallet ändras till ett större antal flyttas numren i Fore-kolumnen nedåt. Err-kolumnen (E) visar skillnaden mellan observationen och prognosen. Till exempel är observationen vid tidpunkten 1 6. Det prognostiserade värdet som gjorts från det glidande medlet vid tidpunkten 0 är 11,1. Felet är då -5,1. Standardavvikelsen och genomsnittlig avvikelse (MAD) beräknas i cellerna E6 respektive E7. Vägde rörliga medelprognosmetoder: Fördelar och nackdelar Hej, ÄLSKAR din inlägg. Undrade om du kunde utveckla vidare. Vi använder SAP. I det finns ett urval som du kan välja innan du kör din prognos som kallas initialisering. Om du markerar det här alternativet får du ett prognosresultat, om du kör prognos igen, under samma period och inte kontrollerar initieringen ändras resultatet. Jag kan inte ta reda på vad den här initialiseringen gör. Jag menar matematiskt. Vilket prognosresultat är bäst att spara och använda till exempel. Förändringarna mellan de två är inte i den prognostiserade kvantiteten men i MAD och Error, säkerhetslager och ROP-kvantiteter. Inte säker på om du använder SAP. hej tack för att du förklarade så effektivt det var för gd. tack igen Jaspreet Lämna ett svar Avbryt svar Om Shmula Pete Abilla är grundaren av Shmula och karaktären, Kanban Cody. Han har hjälpt företag som Amazon, Zappos, eBay, Backcountry och andra att minska kostnaderna och förbättra kundupplevelsen. Han gör det genom en systematisk metod för att identifiera smärtpunkter som påverkar kunden och verksamheten och uppmuntrar ett brett deltagande från företagets intresseföretag för att förbättra sina egna processer. Den här webbplatsen är en samling av sina erfarenheter som han vill dela med dig. Kom igång med gratis nedladdningar
No comments:
Post a Comment